

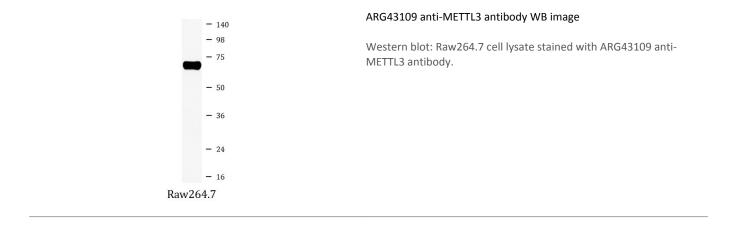
ARG43109 anti-METTL3 antibody

Package: 100 μl Store at: -20°C

Summary

Product Description	Rabbit Polyclonal antibody recognizes METTL3
Tested Reactivity	Hu, Ms, Rat
Tested Application	FACS, ICC/IF, IHC-P, IP, WB
Host	Rabbit
Clonality	Polyclonal
Isotype	lgG
Target Name	METTL3
Species	Human
Immunogen	Synthetic peptide derived from Human METTL3.
Conjugation	Un-conjugated
Alternate Names	Spo8; IME4; Methyltransferase-like protein 3; EC 2.1.1.62; N6-adenosine-methyltransferase 70 kDa subunit; M6A; MT-A70

Application Instructions


Application table	Application	Dilution
	FACS	1:50
	ICC/IF	1:50 - 1:200
	IHC-P	1:50 - 1:200
	IP	1:50
	WB	1:500 - 1:2000
Application Note	* The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.	
Positive Control	Raw264.7	
Observed Size	~ 68 kDa	

Properties

Form	Liquid
Purification	Affinity purified.
Buffer	PBS (pH 7.4), 150 mM NaCl, 0.02% Sodium azide and 50% Glycerol.
Preservative	0.02% Sodium azide
Stabilizer	50% Glycerol

Bioinformation

Bioinformation	
Gene Symbol	METTL3
Gene Full Name	methyltransferase like 3
Background	This gene encodes the 70 kDa subunit of MT-A which is part of N6-adenosine-methyltransferase. This enzyme is involved in the posttranscriptional methylation of internal adenosine residues in eukaryotic mRNAs, forming N6-methyladenosine. [provided by RefSeq, Jul 2008]
Function	The METTL3-METTL14 heterodimer forms a N6-methyltransferase complex that methylates adenosine residues at the N(6) position of some RNAs and regulates various processes such as the circadian clock, differentiation of embryonic and hematopoietic stem cells, cortical neurogenesis, response to DNA damage, differentiation of T-cells and primary miRNA processing (PubMed:22575960, PubMed:24284625, PubMed:227373337, PubMed:27799998, PubMed:26321680, PubMed:26593424, PubMed:226506078, PubMed:27373337, PubMed:27261194, PubMed:28297716, PubMed:27281194, PubMed:229506078, PubMed:23948140, PubMed:24096161, In the heterodimer formed with METTL14, METTL3 constitutes the catalytic core (PubMed:27627798, PubMed:27373337, PubMed:27281194). N6-methyladenosine (m6A), which takes place at the 5'-[AG]GAC-3' consensus sites of some mRNAs, plays a role in mRNA stability, processing, translation efficiency and editing (PubMed:22575960, PubMed:24284625, PubMed:25719671, PubMed:25799998, PubMed:26231680, PubMed:25593424, PubMed:28297716, PubMed:9409616). M6A acts as a key regulator of mRNA stability: methylation is completed upon the release of mRNA into the nucleoplasm and promotes mRNA detabilization and degradation (PubMed:26376921). In embryonic stem cells (ESCs), m6A methylation of mRNAs encoding key naive pluripotency-promoting transcripts results in transcript destabilization, promoting differentiation of ESCs (By similarity). M6A regulates the length of the circadian lock: acts as an early pace-setter in the circadian loop by putting mRNA production on a fast-track for facilitating nuclear processing, thereby providing an early point of control in setting the dynamics of the feedback loop (By similarity). M6A also regulates circadian regulation of m6A on poly(A) transcripts at DNA damage sites, leading to the recruitment of POLK to DNA damage sites (PubMed:22571614). M6A is also required for T-cell homeostasis and differentiation m6 methylation of tascripts of SOCS family members (SOCS1, SOCS3 and CISH) in naive T-cells promotes
Highlight	Related news: m6A reader YTHDF2 in mRNA decay and aggresome formation;
Calculated Mw	64 kDa
Cellular Localization	Nucleus. Nucleus speckle. Cytoplasm. Note=Colocalizes with speckles in interphase nuclei, suggesting that it may be associated with nuclear pre-mRNA splicing components (PubMed:9409616). In response to ultraviolet irradiation, colocalizes to DNA damage sites however, it probably does not bind DNA but localizes in the vicinity of DNA damage sites (PubMed:28297716). [UniProt]

