ARG52360
anti-NMDAR2A antibody, N-terminal

Summary

Product Description
Rabbit Polyclonal antibody recognizes NMDAR2A

Tested Reactivity
Ms, Rat

Predict Reactivity
Bov, Dog

Tested Application
ICC/IF, IHC-Fr, WB

Host
Rabbit

Clonality
Polyclonal

Isotype
IgG

Target Name
NMDAR2A

Antigen Species
Rat

Immunogen
Synthetic peptide corresponding to amino acid residues from the N-terminal region of the NR2A subunit conjugated to KLH

Conjugation
Un-conjugated

Alternate Names
FESD; NR2A; GluN2A; Glutamate receptor ionotropic, NMDA 2A; N-methyl D-aspartate receptor subtype 2A; EPND; Glutamate [NMDA] receptor subunit epsilon-1; NMDAR2A; LKS; hNR2A

Application Instructions

<table>
<thead>
<tr>
<th>Application</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC/IF</td>
<td>1:200 - 1:500</td>
</tr>
<tr>
<td>IHC-Fr</td>
<td>1:200 - 1:500</td>
</tr>
<tr>
<td>WB</td>
<td>1:1000</td>
</tr>
</tbody>
</table>

Application Note
Specific for the ~180k NR2A subunit of the NMDA receptor.
* The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.

Calculated Mw
165 kDa

Properties

Form
Liquid

Purification
Affinity Purified

Buffer
10 mM HEPES (pH 7.5), 150 mM NaCl, 0.1 mg/ml BSA and 50% Glycerol

Stabilizer
0.1 mg/ml BSA, 50% Glycerol

Storage instruction
For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use.
Bioinformation

Database links
- GeneID: 14811 Mouse
- GeneID: 24409 Rat
- Swiss-port # P35436 Mouse
- Swiss-port # Q00959 Rat

Gene Symbol
GRIN2A

Gene Full Name
glutamate receptor, ionotropic, N-methyl D-aspartate 2A

Background
The ion channels activated by glutamate are typically divided into two classes. Glutamate receptors that are activated by kainate and α-amino-3-hydroxy-5-methyl-4-isoxalone propionic acid (AMPA) are known as kainate/AMPA receptors (K/AMPAR). Those that are sensitive to N-methyl-D-aspartate (NMDA) are designated NMDA receptors (NMDAR). The NMDAR plays an essential role in memory, neuronal development and it has also been implicated in several disorders of the central nervous system including Alzheimer’s, epilepsy and ischemic neuronal cell death (Grosshans et al., 2002; Wenthold et al., 2003; Carroll and Zukin, 2002). The NMDA receptor is also one of the principal molecular targets for alcohol in the CNS (Lovinger et al., 1989; Alvestad et al., 2003; Snell et al., 1996). The NMDAR is also potentiated by protein phosphorylation (Lu et al., 1999). The rat NMDAR1 (NR1) was the first subunit of the NMDAR to be cloned. The NR1 protein can form NMDA activated channels when expressed in Xenopus oocytes but the currents in such channels are much smaller than those seen in situ. Channels with more physiological characteristics are produced when the NR1 subunit is combined with one or more of the NMDAR2 (NR2 A-D) subunits.

Research Area
Neuroscience antibody; Postsynaptic Receptor antibody

Images

ARG52360 anti-NMDAR2A antibody, N-terminal WB image

Western Blot: 10 μg of rat hippocampal lysate showing specific immunolabeling of the ~180k NR2A subunit stained with NMDAR2A antibody (ARG52360)