

Product datasheet

info@arigobio.com

ARG54885 anti-SARS-CoV Spike protein antibody

Package: 100 μl Store at: -20°C

Summary

Host

Product Description Rabbit Polyclonal antibody recognizes SARS-CoV Spike protein.

Tested Reactivity Virus **Tested Application** WB

Clonality Polyclonal

Isotype IgG

Target Name SARS-CoV Spike protein

KLH-conjugated synthetic peptide corresponding to aa. 532-562 of the middle of SARS-CoV Spike Immunogen

protein.

Rabbit

Conjugation Un-conjugated

Application Instructions

Application table	Application	Dilution
	WB	1:1000
Application Note	* The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist.	

Properties

Form Liquid

Purification Purification with Protein G.

Buffer PBS and 0.09% (W/V) Sodium azide

0.09% (W/V) Sodium azide Preservative

Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot

and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated

freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed

before use.

Note For laboratory research only, not for drug, diagnostic or other use.

Bioinformation

Function S1 attaches the virion to the cell membrane by interacting with human ACE2 and CLEC4M/DC-SIGNR, initiating the infection. Binding to the receptor and internalization of the virus into the endosomes of

the host cell probably induces conformational changes in the S glycoprotein. Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes. S2 is a class I viral fusion protein. Under the current model, the protein has at least three

conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. [UniProt]

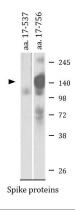
Highlight Related products:

<u>SARS-CoV antibodies</u>; <u>SARS-CoV ELISA Kits</u>; <u>SARS-CoV recombinant proteins</u>; <u>Anti-Rabbit IgG secondary antibodies</u>;

Related news:

HMGB1, a biomarker and therapeutic target in COVID-19

ACE2, receptor of 2019-nCoV


Exploring Antiviral Immune Response

Research Area Microbiology and Infectious Disease antibody

Cellular Localization Virion membrane; Single-pass type I membrane protein. Host endoplasmic reticulum-Golgi

intermediate compartment membrane; Single-pass type I membrane protein. Host cell membrane; Single-pass type I membrane protein. Note=Accumulates in the endoplasmic reticulum-Golgi intermediate compartment, where it participates in virus particle assembly (By similarity). Some S oligomers are transported to the plasma membrane, where they may mediate cell-cell fusion.

Images

ARG54885 anti-SARS-CoV Spike protein antibody WB image

Western blot: Recombinant Spike proteins (aa. 17-537 or aa. 17-756) stained with ARG54885 anti-SARS-CoV Spike protein antibody.