

Iron Assay Kit

Iron Assay Kit is a detection kit for the quantification of Iron ions Fe3+ or Fe2+ in serum and plasma.

Catalog number: ARG81386

Package: 250 tests

For research use only. Not for use in diagnostic procedures.

TABLE OF CONTENTS

SECTION	Page
PRINCIPLE OF THE ASSAY	3
MATERIALS PROVIDED & STORAGE INFORMATION	3
MATERIALS REQUIRED BUT NOT PROVIDED	3
TECHNICAL HINTS AND PRECAUTIONS	4
SAMPLE COLLECTION & STORAGE INFORMATION	4
REAGENT PREPARATION	5
ASSAY PROCEDURE	6
CALCULATION OF RESULTS	7
EXAMPLE OF TYPICAL STANDARD CURVE	8
OLIALITY ASSLIBANCE	8

MANUFACTURED BY:

Arigo Biolaboratories Corporation

Address: 9F.-7, No. 12, Taiyuan 2nd St., Zhubei City,

Hsinchu County 302082, Taiwan

Phone: +886 (3) 621 8100

Fax: +886 (3) 553 0266

Email: info@arigobio.com

PRINCIPLE OF THE ASSAY

This kit is designed to measure total free iron (Fe^{2+} and Fe^{3+}) directly in serum and plasma without any pretreatment. Fe^{3+} in the sample is reduced to Fe^{2+} , and Fe^{2+} was complexed with a chromogen to form a blue colored complex. Therefore, this improved method assay kit allowing the assay for total free iron (Fe^{2+} and Fe^{3+}) concentration. The intensity of the color is measured at a wavelength of 590 nm. The concentration of total free iron in the sample is then determined by comparing the O.D. of samples to the standard curve.

MATERIALS PROVIDED & STORAGE INFORMATION

Component	Quantity	Storage information
Reagent A	50 ml	RT
Reagent B	4 ml	4°C
Reagent C	4 ml	4°C
Standard (10 mg/dL Fe2+)	1 ml	4°C

The kit is shipped at room temperature. Store the Reagent A at room temperature and all other reagents at 4°C. Shelf life of 12 months after receipt.

MATERIALS REQUIRED BUT NOT PROVIDED

- Microplate reader capable of measuring absorbance at 590 nm
- Flat bottomed 96-well microplate
- Pipettes and pipette tips
- Heat block or hot water bath or oven
- Deionized or distilled water

TECHNICAL HINTS AND PRECAUTIONS

- Wear protective gloves, clothing, eye, and face protection especially while handling blood or body fluid samples.
- Store the kit at 4°C at all times, the Reagent A can be stored at room temperature.
- Briefly spin down the reagents before use.
- It is highly recommended that the standards and samples be assayed in at least duplicates.
- Change pipette tips between the addition of different reagent or samples.
- All reagents should be warmed to room temperature before use.

SAMPLE COLLECTION & STORAGE INFORMATION

The sample collection and storage conditions listed below are intended as general guidelines. Sample stability has not been evaluated.

<u>Serum</u>- Use a serum separator tube (SST) and allow samples to clot for 30 minutes before centrifugation for 15 minutes at 1000 x g at 2-8°C. Remove serum and assay immediately or aliquot and store samples at \leq -20 °C. Avoid repeated freeze-thaw cycles.

<u>Plasma</u> - Collect plasma using heparin as an anticoagulant (EDTA is a kind of iron chelators, and it interferes with this assay and should be avoided to use in sample preparation). Centrifuge for 15 minutes at 1000 x g at 2-8°C within 30 minutes of collection. Assay immediately or aliquot and store samples at \leq -20°C. Avoid repeated freeze-thaw cycles.

Note: Samples should be clear and free of precipitates or turbidity. If not, centrifuge or filter to clarify samples prior to assay

REAGENT PREPARATION

• Standards: Add 40 μl of 10 mg/dL stock standard into 360 μl of distilled water to generate a standard #S1 with 1000 μg/dL of Fe²⁺. Dilute the standards with distilled water and distilled water serves as zero standard (0 μg/dL). The example of the standards dilution table is as below:

Standard #	Standard Fe ²⁺	Volume of 1000	Volume of Distilled
<u> </u>	<u>(μg/dL)</u>	μg/dL Fe ²⁺ (μl)	<u>water (μl)</u>
S1	1000	100	0
S2	800	80	20
S3	600	60	40
S4	400	40	60
S5	300	30	70
S6	200	20	80
S7	100	10	90
S8	0	0	100

Working Reagent T (For total Fe):

Prepare immediately before use, mix 20 volumes of Reagent A, 1 volume of Reagent B and 1 volume of Reagent C and mix well to generate the Working Reagent T for total free Fe measurement. (E.g. mix 200 μ l of Reagent A, 10 μ l of Reagent B and 10 μ l of Reagent C for each well). Equilibrate to room temperature before assay.

Fe²⁺ Working Reagent (For Fe²⁺ measurement only, optional):

This kit can also be applied to measure Fe^{2+} content only if needed. To assay Fe^{2+} content, prepare Fe^{2+} Working Reagent by mixing 20 volumes of Reagent A, 1 volume <u>distilled water</u> and 1 volume Reagent C and mix well to generate the Fe^{2+} Working Reagent for Fe^{2+} measurement. Equilibrate to room temperature before assay. This Fe^{2+} Working

Reagent does not include reductant and Fe³⁺ was not reduced to Fe²⁺.

ASSAY PROCEDURE

Standards and samples should be assayed in at least duplicates.

For total Fe:

- 1. Add $50 \mu l$ per well of standards and samples in duplicates into appropriate wells of a clear flat bottom 96-well plate.
- 2. For serum and plasma samples, it is recommended add 50 μ l of one of the sample in two of separate wells as **sample blank**.
- 3. Add 200 µl of Working Reagent T to Standards and Samples wells.
- 4. Add **200 μl** of **Reagent A** to sample blank wells.
- 5. Gently tap plate to mix thoroughly.
- 6. Incubate the plate for **40 min at room temperature**
- 7. Read O.D. with a microplate reader at **590 nm (510-630 nm)** immediately.

For Fe²⁺ measurement (optional if needed):

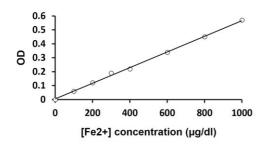
- 1. Add $50 \,\mu l$ per well of standards and samples in duplicates into appropriate wells of a clear flat bottom 96-well plate.
- 2. For serum and plasma samples, it is recommended add 50 μ l of one of the sample in two of separate wells as **sample blank**.
- 3. Add $200 \mu l$ of $\underline{Fe^{2+}Working Reagent}$ to Standards and Samples wells.
- 4. Add $200 \mu l$ of Reagent A to sample blank wells.
- 5. Gently tap plate to mix thoroughly.
- 6. Incubate the plate for **40 min at room temperature**
- 7. Read O.D. with a microplate reader at **590 nm (510-630 nm)** immediately.

CALCULATION OF RESULTS

- 1. Calculate the average absorbance values for each set of standards and samples.
- 2. Using linear graph paper, construct a standard curve by plotting the mean absorbance obtained from each standard against its concentration with absorbance value on the vertical (Y) axis and concentration on the horizontal (X) axis.
- 3. Using the mean absorbance value for each sample determine the corresponding concentration from the standard curve.
- 4. Automated method: The results in the IFU have been calculated automatically using a linear regression fitting. Determine the slope using linear regression fitting. The Iron concentration of Sample is calculated as

```
Iron (\mu g/dL) = (OD <sub>sample</sub> – OD <sub>Blank</sub>) / Slope
```

For serum/plasma samples,


OD Blank = OD values of the Sample Blank (add reagent A only)

For other samples,

OD Blank = OD values of the water blank (Standard #S8)

- 5. Conversions: 1 mg/dL Fe equals 179 μ M, 0.001% or 10 ppm.
- 6. Typical serum iron values: 70-180 μg/dL.

EXAMPLE OF TYPICAL STANDARD CURVE

QUALITY ASSURANCE

Sensitivity

The standard ranged: 0-1000 μg/dL.

Linear detection range: 27 $\mu g/dL$ (4.8 μM) to 1000 $\mu g/dL$ (179 μM)

Sensitivity: $27 \mu g/dL (4.8 \mu M)$